First Grade Math Standards and “I Can Statements”

CC.1.OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
- I can use a symbol (e.g. ?, x) to represent an unknown number in a problem.
- I can determine the operation to solve word problems with unknowns.
- I can solve word problems by adding 3 numbers in different ways.

CC.1.OA.2 Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
- I can add 3 numbers.
- I can identify parts/addends in a word problem.
- I can show how to solve word problems

CC.1.OA.3 Apply properties of operations as strategies to add and subtract.
- I can explain how properties of addition and subtraction work.
- I can use strategies to solve addition and subtraction problems.

CC.1.OA.4 Understand subtraction as an unknown-addend problem. For example, subtract 10 – 8 by finding the number that makes 10 when added to 8.
- I can identify the unknown in a subtraction problem.
- I can solve subtraction problems to find the missing addend.
- I can explain the relationship of addition and subtraction.
CC.1.OA.5 Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

- I can count on from a given number.
- I can count back from a given number.
- I can explain how counting on relates to addition.
- I can explain how counting back relates to subtraction.
- I can explain how counting on relates to subtraction.

CC.1.OA.6 Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8 + 6 = 8 + 2 + 4 = 10 + 4 = 14$); decomposing a number leading to a ten (e.g., $13 - 4 = 13 - 3 - 1 = 10 - 1 = 9$); using the relationship between addition and subtraction (e.g., knowing that $8 + 4 = 12$, one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding $6 + 7$ by creating the known equivalent $6 + 6 + 1 = 12 + 1 = 13$).

- I can add within 20.
- I can subtract within 20.
- I can use strategies to add and subtract within 20.
- I can add fluently within 10.
- I can subtract fluently within 10.

CC.1.OA.7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6 = 6, 7 = 8 - 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2$.

- I can explain the meaning of an equal sign.
- I can compare the values on each side on an equal sign.
- I can determine if the equation is true or false.
CC.1.OA.8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11$, $5 = _ - 3$, $6 + 6 = _$.

- I can recognize part-part-whole relationships of three numbers
- I can determine the missing value in an addition equation.
- I can determine the missing value in a subtraction problem.

CC.1.NBT.1 Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

- I can write numerals up to 120.
- I can write a numeral to represent a number of objects.
- I can count to 120 starting with a given number.
- I can read the numerals up to 120.

CC.1.NBT.2 Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:

-- a. 10 can be thought of as a bundle of ten ones — called a “ten.”
-- b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
-- c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).

- I can explain what each digit of a two-digit number represents.
- I can identify a bundle of 10 ones as a “ten”.
- I can represent numbers 11 to 19 as a 10 and ones.
- I can represent numbers 20 to 90 as tens and zero ones.
CC.1.NBT.3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

- I can identify the value of each digit in a two-digit number.
- I can explain what each symbol means (> , < , =).
- I can compare two 2 digit numbers.
- I can use >, <, = symbols to compare two 2 digit numbers.

CC.1.NBT.4 Add within 100, including adding a two-digit number and a one digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

- I can show that in adding 2 digit numbers, you add ones to ones and tens to tens.
- I can recognize when to regroup to compose (make) a ten.
- I can add a 2 digit number and a 1 digit number within 100.
- I can add a 2 digit number and 1 digit number with regrouping within 100.
- I can add a 2 digit number and a multiple of 10 within 100.
- I can relate the strategy to an equation.
- I can explain why I used a chosen strategy to solve a written equation.

CC.1.NBT.5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.

- I can mentally add 10 to a given 2 digit number.
- I can mentally subtract 10 from a given 2 digit number.
- I can explain how to find 10 more than a given 2 digit number.
- I can explain how to find 10 less than a given 2 digit number.
CC.1.NBT.6 Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

- I can subtract multiples of 10 up to 90.
- I can choose a strategy to solve subtraction problems with multiples of 10,
- I can relate the strategy to an equation.
- I can explain why I used the chosen strategy to solve a written equation.

CC.1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.

- I can put 3 objects in order by length.
- I can compare the length of three objects.
- I can compare the lengths of two objects by using a third object to compare them.

CC.1.MD.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

- I can use the same size non-standard objects as repeating units.
- I can measure length using a variety of non-standard units.
- I can express the length of the measured object as a number.
- I can show how to measure the length of an object using non-standard units.
CC.1.MD.3 Tell and write time in hours and half-hours using analog and digital clocks.

- I can recognize that analog and digital clocks are objects that measure time.
- I can identify hour hand and minute hand and distinguish between the two.
- I can identify analog and digital clocks
- I can determine where the minute hand must be when the time is to the hour (o’clock).
- I can determine where the minute hand must be when the time is to half hour (thirty).
- I can tell time to the hour using analog and digital clocks.
- I can tell time to the half-hour using analog and digital clocks.
- I can write time to the hour using analog and digital clocks.
- I can write time to the half hour using analog and digital clocks.
- I can show time to the hour and half-hour correctly using an analog clock.

CC.1.MD.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

- I can identify different methods to organize data (e.g. tally chart, sorting, classifying, categorizing).
- I can identify different methods to represent data (e.g. tally chart, sorting, classifying, categorizing).
- I can organize data with up to three categories.
- I can interpret data representation by asking and answering questions about the data.
- I can represent data with up to 3 categories (e.g. tally chart, bar graph, pictograph, etc.)
CC.1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus nondefining attributes (e.g., color, orientation, overall size); for a wide variety of shapes; build and draw shapes to possess defining attributes.

- I can identify attributes that make a shape.
- I can identify attributes that do not make the shape.
- I can classify shapes by their attributes.
- I can build shapes to show attributes.
- I can draw shapes to show attributes.

CC.1.G.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. (Students do not need to learn formal names such as “right rectangular prism.”)

- I can recognize that shapes can be composed and decomposed to make new shapes.
- I can describe attributes of original and composite shapes (combined shapes).
- I can determine how the original and created composite shapes (combined shapes) are alike and different.
- I can create composite shapes
- I can compose new shapes from a composite shape

CC.1.G.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.

- I can identify when shares (parts) are equal.
- I can identify two and four equal shares (parts).
- I can describe equal shares (parts) using vocabulary; halves, fourths, and quarters, half of, fourth of, and quarter of.
- I can describe the whole as two of two or four of four equal shares (parts).
- I can justify why dividing (decomposing) a circle or rectangle into more equal shares (parts) creates smaller pieces.